
Replatforming Layer7 APIM
and APIOPS Automation

Carlos Pimentel
Senior Cloud Engineer – William Hill

Vince Baker
Principal Architect - Apiida

Who we are

Who we are

• Around 10 years using Layer7 APIM at WH

• Started with 3 Virtual Appliance gateways, then 7
(geographically split into 2 clusters).
Increased to 56 gateways in production to handle
key events.

• Hard to maintain patching and policies change.

• Unsupported ESM and GMU was highly inefficient.

• ManyClassic Portals with problematic custom
sync.

• Mix of badly written v1 APIs and well written v2’s
(using a framework).

• Performance was good - Proved itself with the GN
horse race event in 2017 with a 11k req/s spike.

History of API gateway platform at WH

• Primary requirement - Remove all WH API systems
from the existing datacentres and move to AWS.

• Allow scaling for key events in the gaming calendar
- Automated scaling of gateways

• Ease of API version management between environments
- Version Control using GIT.

• Whilst we’re at it......
- Upgrade Gateways to v10
- Upgrade the Developer Portal to v4.x (now v5.x)
- Preserve customer/consumer API Keys/Secrets
- Move away from ESM and streamline the API lifecycle process
- Split the Gaming and Sports business verticals
- Shiny new framework designed around cloud infrastructure (v3
Framework/apiida API Service Manager)

Challenges/Requirements

• AWS Native Gateway & Kong were considered.
- AWS “per request” cost was too high.
- Didn’t provide enough orchestration - Middleware Lambda code needed.

• Choices of L7 form factor considered
- Docker on AMI nodes,
- VMC (VMWare appliances in AWS)
- AMI images
- Containers managed by Kubernetes (the winner).

• 4.5 Developer Portal (Now at 5.1)
- Migrate Prod applications/keys using migration tool.

• V10.x Gateway

• API Lifecycle (API Gateway Manager)
- WH and apiida has been working closely together to help develop AAGM as the WH
gateway setup is challenging and great for finding new feature requirements for AAGM.

• apiida API Service Manager (Gateway framework)

Considerations

Solutions

Final Solution

• New Framework was implemented (AASM)
• Move solution to AWS using EKS
• Use of external hazelcast and database.
• Fast deployment using AAGM
• Gathering metrics with AAGM

– Feeding into Prometheus

• Gateway – Supportable version. No need for separate v10 upgrade of current
deployment.

• Highly scalable (To deal with spikes in traffic)

• Ease of patching and upgrades for Gateway and Portal

• Portal
- Multi Cluster
- Replace flaky custom API Portal sync scripts

• Faster policy dev and service admin with improved framework.

• AWS EKS solution could be migrated to other cloud providers if ever needed.

Advantages of solution

• Initial problem with Framework relying on Gateway “Names” which were dynamic. –
GW didn’t know its identity and therefore it’s routing, CWPs, Backends, routing, logging
etc. Fixed with cloud aware framework.

• Early 4.x Portal didn’t have API Plans.

• Portal – Quotas are no longer reset hourly. Minor issue.

• Portal data had many issues during 3.5 -> 4.5 migration.

• Getting GW metrics into NewRelic

Problems faced

• API Gateways metrics in Newrelic

Layer7 APIM today

• EKS deployed withTerraform into AWS
• API Gateways and Portal deployed with Kuztomize
• EKS nodes - 32 CPU, 64GB RAM – GW pods 8 CPU and 8 RAM (6GB Java)

• Istio for load balacing and also Blue-Green deployment

• Gitlab Pipelines
• Separate portals for Prod and NonProd
• Currently running a base of 24 gateways in sports and 4 in gaming.
• Scalable to 96 in sports and 32 in gaming without extra deployment config.

Cloud Infrastructure

• Automated deployment of changes using AAGM APIs with GitLab (CI/CD).
• Automatic LB traffic masking, smoke test, then unmasking if tests pass.
• Event based autoscaling.

We’re not yet finished - What’s next?

QUESTIONS?

That’s all folks!

Thank you for for being a
great audience, for listening
to our story and joining in.

That’s all folks!

